The quantitative study of user behavior online
Over 50 years of computers

ENIAC: Less computing power than an iphone
Today – Yahoo! data center

Thousands of computers, each million times faster than ENIAC
Some trends

• **Moore’s Law**: Computers double in speed every 18 months
 – Every 15 years, computers get 1000 times faster!!

• **All information in the world about everything, is available everywhere, forever**
 – The millions of computers at Google, Yahoo, Facebook, Amazon … are available to you all the time
The most important trend

• Most computer cycles are used
 – Not for computing …
 – … but for communications
 – Not by scientists or specialists
 – … but by ordinary consumers

• Ergo: the big question is not
 – What can be computed …
 – … but what users will do with computing
The scientific shift

• Computer scientists study computation
• Social scientists study people
• Now – we must study the combination!
In this lecture

• Some vignettes of such studies

• Why this is hard
 – But important

• The new opportunity: the Web
 – Biggest observatory of social behavior
Learning about users on the Web

- **Lab/field studies**
 - Eye-tracking, interviews
 - Pursue defined tasks
- **Instrumented panels**
 - Toolbars, clients
 - Log what users do on their own
- **Click logs**
 - Can experiment with interfaces
 - No clue why people click what they click
• “the field study, the instrumented user panel, and the raw query log, provide complementary sources of data”
• “logs can only measure the how and the what, rather than the why. For example, if we have a sequence of queries, we only know the sequence of queries, but we have no evidence of why the user is typing in that particular sequence.”
General theme

• What questions can we answer by these methods?
• Quantitative sociology meets data mining

All behavior has social meaning
Alfred Adler
Long Tail, Heavy Tail?

Observation:

Many products, each purchased very few times, together make up a large fraction of all purchases.

Movies … Songs … Queries to a search engine …
“The Long tail”

ANATOMY OF THE LONG TAIL

Online services carry far more inventory than traditional retailers. Rhapsody, for example, offers 19 times as many songs as Wal-Mart’s stock of 39,000 tunes. The appetite for Rhapsody’s more obscure tunes (chart below in yellow) makes up the so-called Long Tail. Meanwhile, even as consumers flock to mainstream books, music, and films (right), there is real demand for niche fare found online.

THE NEW GROWTH MARKET:
OBSCURE PRODUCTS YOU CAN’T GET ANYWHERE BUT ONLINE

- **Rhapsody**
 - Total Inventory: 735,000 songs
 - Typical Wal-Mart store: 30,000 songs
- **Amazon.com**
 - Total Inventory: 2.1 million books
 - Typical Barnes & Noble books
- **Netflix**
 - Total Inventory: 25,000 DVDs
 - Typical Blockbuster store: 3,000 DVDs

TOTAL SALES

- Rhapsody: 6,100
- Amazon.com: 2,000
- Netflix: 1,000

Songs available at both Wal-Mart and Rhapsody

Songs available only on Rhapsody

Chris Anderson, Wired, Oct 2004
Heavy tails

- Decreasing histograms over numbers $[1,n]$ – E.g., movie popularities

- For any fixed k (say, 10000), the fraction in all buckets $>k$ is quite big

- Arise in observed statistics arising from human behavior
 - Number of friends, search queries, popular songs, books …
Heavy tail of user interests

- Many queries, each asked very few times, make up a large fraction of all queries
 - Movies watched, blogs read, words used …

One explanation

Normal people

Weirdos
Heavy tail of user interests

- Many queries, each asked very few times, make up a large fraction of all queries
 - Movies watched, blogs read, words used …

The reality

We are all partially weird!

Broder et al 2009
Why the heavy tail matters

If you’re building a market, you chase the tail …

Not because the worst-sellers make a lot of money

But because they matter to a lot of people
The change for Computer Science

• Social phenomena repeatedly create such heavy tails
 – We can observe them on the Web at scale
 – Traditional analysis is inadequate

• We need a new style of analysis
 – New experimental tools
 – New mathematical tools
Social attention and influence

- In 1940’s Paul Lazarsfeld:
 - “Who talks to whom about what, and with what effect?”
- Difficult to answer
 - Measuring “who talks to whom” hard at scale
 - Measure “who influences whom” even harder
- Web 2.0 brings the answer within reach
 - Fascinating implications for web companies, users … and for science
Is it a small world?

ORIGIN OF 6 DEGREES

- 1960’s: Milgram and Travers “small world” experiment
- Subjects given letter for target individual
- Could only send to a friend
- Protocol generated 300 “letter chains” - 64 reached target
- Led to the famous “six degrees” phrase

6 DEGREES – WEB EDITION

- 2001-02: recreate w/email
- Milgram: one target, 300 chains
- Now: 18 targets around world, 24,163 chains, 61,168 hands, 166 countries
- 400 reached targets

Dodds *et al.* 2001
“Hits” are many times more successful than average
 - Success seems obvious in retrospect, but hard to predict

Can inequality and unpredictability be explained by social influence?

Problem: Experiment would require 1,000s of participants
 - Each “market” requires hundreds of participants
 - Need to compare many markets

From Connections \(\rightarrow\) Influence

Cultural Markets (songs ...)

From Connections → Influence

- Experiment with subjects asked to rate new songs
- **Control group:** songs presented in random order
- **Treatment group:** songs presented in order of popularity for other users

Salganik et al. 2008, 2009
Influence in cultural markets

• Individuals are influenced by the choices of others
 – The stronger the social signal, the more they are influenced

• Collective decisions are also influenced
 – Popular songs are more popular (and unpopular songs are less popular)
 – However, which songs become popular becomes harder to predict

• The paradox of social influence:
 – Individuals have more information on which to base choices
 – But collective choice (i.e. what becomes popular) reveals less and less about individual preferences

• Manipulating social influence not so easy
 – Can create self-fulfilling prophecies at level of individual songs, but not for entire market
Influence and twitter

• Twitter is ideally suited to answer questions about influencers
 – Fully-observable network of individuals who explicitly opt-in to follow each other
 – Twitterers are expressly motivated to be influential
• Relatively easy to track diffusion
 – Popularity of URL shorteners means can track tweets over hops
• Objective is to predict influence as function of
 – # Followers, # Friends, # Reciprocated Ties
 – # Tweets, Time of joining
 – Past influence score

Watts et al. 2007 -
The Kardashian question

- Large cascades are rare, hence:
 - “Social epidemics” are extremely rare
 - Probably impossible to predict them or how they will start
 - Better to trigger many small cascades
- $10,000 per tweet isn’t good value
- But “Ordinary Influencers” are promising
 - Only influence one other person on average
 - Average influence is close to zero (0.28)
Understanding the observations

- Can create model, prove theorems
- Can address “which influencers should we target?”
 - Can run experiments at scale
- But … no sociological understanding yet of why/how all this happens
 - No experimental loop
How users see search results
Image and product search

Ordered by decreasing score in row-major order
Users don’t see row-major

- Variety of evidence that users’ eye scans don’t go row-major
 - Eye tracking at search engines
- Visual cues not well understood
- Diversity
More general 2-d layout

• The problem goes beyond image/product results
 – Search engines doing general two-dimensional results presentation
 – Heterogeneous objects being laid out in the results page
Richer use of 2-d real estate

How do we lay out all these links on the screen?
New approach + Chierichetti, Kumar

- Analyze click logs
 - Where do users click on the screen, and in what order

Analyze 100’s of millions of users
Calculate a model of users

Model tells us where users’ eyes go on the screen
What does this model tell us?

- Large scale validation of eye-tracking
 - First results page different from rest
 - *Golden* triangle

Eye tracking heat map
What’s new

• Silver triangle
• Now can place images where users look
Where to put the images
Prediction Markets

“The Wisdom of the Crowds”
Prediction markets

• Idea: a group of people can collectively make a prediction better than an expert
 – *The Wisdom of the Crowds*

• E.g., employees in a project predict when the project will finish
 – Generally, a better prediction than the official project timeline!
Prediction markets

• Markets where you buy/sell predictions
 – *E.g.*, “stock price” that the next AS Roma game will be a draw is 92 cents
 – Buy and sell stocks as crowd predicts
 – Over time, these prices are a good predictor of actual outcome

• Not an opinion poll!
Example: Iowa Electronic Markets

- Operated by the Business School at the University of Iowa
 - Used for academic studies
- Can buy/sell outcomes of US elections
- http://tippie.uiowa.edu/iem/index.cfm
IEM prices for 2010 US elections

H = House, S = Senate
Are prediction markets truly powerful?

• Goel *et al.* 2010
 – Studied thousands of football games, music, …

• Prediction markets can be better than other techniques such as machine learning and polls
 – But the advantage is very slight

• Thus, the Wisdom of the Crowds may not be as powerful as believed!
Combinatorial prediction markets

Predictalot and variants

- Can buy combinations: e.g., all four semi-final teams will be from Europe, etc.
- Predictions of various participants will interact
Looking ahead ...
What have we seen so far

• Many vignettes of human behavior
 – Studied at varying scales
• The Web affords us an observatory into social behavior
We have the Observatory

• **What are some big questions?**
 – Qualitative studies of user engagement
 • What do people want to do?
 – Quantifying user engagement
 – Inventing new genres of online experience
 – Optimizing user experiences
 – Whose happiness are we optimizing?
 • Social choice questions
 • Privacy
What are the academic challenges?

- Social scientists – study audiences at small scale, but deep understanding
- Computer scientists – large scale, but little understanding
- How can we combine these academic disciplines?
A new convergence

- Social sciences meet massive computing
 - Already happening in computational microeconomics
Grazie!

– http://labs.yahoo.com